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CHARGING STRATEGIES FOR ELECTROSTATIC CONTROL OF 
SPACECRAFT FORMATIONS 

Leonard Felicetti* and Giovanni B. PalmeriniÀ 

Formation control by means of electrostatic forces, generating attractive or re-

pulsive actions by charging the satellitesô surfaces, has been recently proposed 

for high altitude orbits to precisely maintain the configuration without risk of 

plume impingement. This paper focus on electrostatic control and switching 

strategies for charge distribution in spacecraft formations, taking into account 

the limits on the power requirements. Two nonlinear global control approaches 

are presented and applied to two and three satellitesô formations. Then, an opti-

mized charge distribution process among the satellites is discussed and applied 

to the three spacecraft formation case. Numerical simulations are performed in 

order to evaluate the advantages and drawbacks of this configuration control 

technique. 

INTRODUCTION  

The use of electrostatic forces (Coulomb forces) has been recently proposed for formation ac-

quisition, maintenance and reconfiguration
1
. This new concept of formation control is based on 

the idea of generating attractive or repulsive actions among spacecraft by charging the satellitesô 

surfaces, in order to control their mutual distances.  

Some theoretical and numerical studies were carried on by important space agencies (NASA
2
 

and ESA
3,4

) through their advanced concept teams, in order to analyze the system performances 

and needs. The results of such studies were encouraging because they showed the possibility of 

achieving high specific impulses with limited power requirements. A surprising result of the Cou-

lomb interaction study was that the magnitude of the inter-spacecraft forces is comparable with - 

and may actually exceed - the one provided by micro-propulsion systems proposed for formation 

keeping. New missions involving two or more spacecraft flying in very strict formation are al-

lowed, with very limited propellant consumption and low amount of required power.  Applica-

tions which can benefit from this control technique can be optical interferometry missions like 

large field-of-view planetary detectors or distributed  remote sensing system observing the Earth 

in the visible band from higher orbits (MEO and GEO)
 5
.  

With respect to the classical formation control the most suitable advantages are
5
: (a) no risk of 

thruster plume impingement or contamination of neighboring spacecraft, which is especially im-

portant for optical payload, (b) high equivalent specific impulse, despite limited electrical power 
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requirements and (c) very high precision in control. Classic chemical propulsion systems cannot 

provide so fine and continuous thrust. On the other hand, electric thrusters allow for strict for-

mation position tolerances, but the generated ion fluxes pollute the environment in a way which is 

especially dangerous in case of optical payloads. Instead, the Coulomb force based control con-

cept allows for continuous, fine-resolution maneuverability, which will greatly improve formation 

acquisition and maintenance maneuvers, because of the rapidity at which the Coulomb forces can 

be continuously varied
5
.  

A limit of the technique is represented by the effectiveness of the electrostatic action that is re-

lated to the Debye length parameter, quantifying the shielding effect generated by space plasma. 

As a result, electrostatic control seems better suitable for high altitude orbits. 

 All formations present an unstable behavior if controlled by means of electrostatic forces ap-

plied in an open-loop strategy. Therefore, a feedback law is needed to gain a suitable behavior. 

The extensive research effort by Schaub et al. produced significant advances on modelling and 

control formations of two
6,7,8

, three
9,10,11

 and more
12

 spacecraft. These studies clearly demonstrat-

ed the possibility to acquire and to precisely maintain desired distances between spacecraft. 

 In the case of two spacecraft formation the strategy provides the value of the product of the 

charges to be commanded to the two spacecraft, and its square root is clearly the homogeneous 

and preferred solution for each individual charge. When the number of spacecraft belonging to 

the formation increases, the problem becomes more and more complicated. There is indeed a 

larger number of parameters, but also a richer set of constraints imposed by the desired geometric 

configuration of the formation ï not necessarily easy to apply at the same time on the existing 

orbital dynamics. Feasible solutions different from the square root of the charge products are like-

ly to appear, and the continuity in the required forces should not be given as granted. An addi-

tional, operational constraint to limit the variations in time of the currents to be induced on the 

platforms should be included to handle sudden variations in required forces. Overall, the switch-

ing law for the charging of different spacecraft becomes a far from trivial problem. This paper is 

then focused on the strategies to distribute the charges in formations involving three platforms, 

with the goal to attain the desired configuration in a fast and efficient way, and a constraint on the 

currents to be generated on the spacecraft surfaces, that have to be kept as low as possible. A pre-

liminary selection of the equations to design the controller was performed in 
11,12

. In this work a 

nonlinear global control strategy is computed before, giving as output three desired product 

charges which cannot always be satisfied together. The selection of what charge product must be 

followed is accomplished following the control computation. 

Following material begins with the description of the governing equations of spacecraft charg-

ing (section 1) and of the formation dynamics forced by electrostatic actions (section 2). The 

overall control scheme adopted in this paper is presented in section 3, where also two different 

global control strategies (Lyapunov based and SDRE controls) are described. Then a selection 

criteria and the switching strategy for the case of three spacecraft formation are presented in sec-

tion 4, while in section 5 optimal charge distribution laws are derived satisfying a part of the 

charge products obtained from the global controller The numerical results for both two- and 

three-spacecraft formations reported in the last section before the conclusions, even if prelimi-

nary, proof the interest of the proposed technique, suggesting an in depth analysis taking into ac-

count technological constraints. 

SPACECRAFT CHARGING MODEL  

The charging technology is currently used for controlling the spacecraft potential with respect to 

the surrounding plasma environment. Specific devices (as the plasma contactor used on the Inter-

national Space Station
13

 or ion and electron emitters used in electric propulsion
14

) are commonly 

used for neutralizing the electrostatic charge of the spacecraft with respect the neighbor environ-
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ment, in order to avoid breakdowns which can damage on board electronic hardware. It is worth 

to notice that the space plasma, interacting with the spacecraft surfaces, naturally charges the 

spacecraft negatively
3
. The phenomenon depends upon the local plasma density of electrons/ions, 

the local temperature of electrons/ions and the reached spacecraft charge. The resulting spacecraft 

charge dynamics is the resultant of an equilibrium between fast electrons and slower ions fluxes 

from/to the spacecraft and the neighbor space plasma: if the spacecraft is charged with positive 

charges, it will attract electrons coming from the neighbor plasma, vice-versa a flux of positive 

ions from the plasma will occur if the spacecraft charge is negative
 3
. The possibility to actively 

control the charge of the spacecraft with respect to the neighbor plasma potential was experimen-

tally demonstrated by SCATHA
15

 and ATS
16

 missions. Hollow cathodes (emitting flows of elec-

trons through electron guns) and ion thrusters (emitting positive charges to the space) are com-

monly used for this purpose
13,14

.  

These flows can be considered as positive (for electrons) or as negative (for ions) currents (
ii  

and ei  respectively) which modify the spacecraft charge status scq  through the relation
3
 

sc
t

dq
i

dt
=  (1) 

where it ei i i= + is the resulting electric current. In the following the currents will be considered 

as positive when the electrons go from the spacecraft to the external environment, and the natural 

charging due to the surrounding plasma will be neglected by assuming that currents produced by 

the actuators are higher than natural election/ion fluxes (the contribution of charging devices will 

be actually limited by the on board power and by the dimensions of the hollow cathodes/anodes). 

Under these hypotheses we can assume that the charging and discharging phases are ruled by the 

following relation: 
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where rqi  is the requested current (which will be calculated by a dedicated controller) and thesi + 

and si -are saturation currents of the electron and ion emitters respectively. 

 The resulting spacecraft potential scV  with respect to the surrounding environment can be evalu-

ated as: 

sc
sc

sc

q
V

C
=  (3) 

where scC  is the resulting electric capacitance of the external spacecraft surfaces.  

In order to avoid breakdowns between the spacecraft and the outer plasma, a condition concern-

ing the differences between the two potentials must be satisfied during all the electrostatic ma-

neuvers. In particular, the resulting condition can be roughly written as sc pl brV V V- <D, where 

plV  is the potential of the plasma and brVD  is the maximum admissible potential ensuring that no 

breakdown current occurs between spacecraft and plasma. In order to take into account this prob-

lem, a saturation limit on spacecraft charge is included by assuming the following relation: 

s sc sq q q- +¢ ¢  (4) 

where  sq - and sq + are the lower and upper limits of the spacecraft charges calculated by taking 

into account Eq.(3) and the breakdowns potential limits. 
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The required power and the total energy needed will be taken into account as indexes of the per-

formance of the maneuvers. In particular the required power to charge the spacecraft can be com-

puted by the following relation
1
: 

sc sc scP i V=  (5) 

and a estimation of the required energy can be obtained by the integration of Eq.(5), leading to: 

0 0

f ft t

sc sc sc sc

t t

E P dt i V dt= =ñ ñ  (6) 

DYNAMICS OF CHARGED SATELLITE FORMATIONS  

Let us consider a formation of N  satellites in a circular orbit and let us associate a Local Ver-

tical Local Horizontal (LVLH) reference frame whose origin is coincident with the center of mass 

of the formation F , as depicted in Figure 1. 

 

Figure 1. LVLH reference frame and id  vector definition  

The position of each spacecraft, with respect to the LVLH reference frame, is given by id , whose 

components are aligned along the ĔRr , ĔRJ  and ĔRh  axes representing the radial, the in track and the 

orbit normal unit vectors respectively. 

The dynamics of each satellite can be represented by the Clohessy-Wiltshire equations of mo-

tion
17

:  

( ) ( )0

2

0
Ĕ ĔĔ ĔĔ Ĕ Ĕ Ĕ2 3i R R R R i R R R R i id n r r d n r r h h d fJ J= - Ö + - Ö + (7) 

where 3

0 / Rn rmÄ=  is the reference orbit mean motion, Rr  is the reference orbit radius and if  

is the specific control force applied to the i-th spacecraft. 

For electrostatic actuated spacecraft, the modeling of the control force is given by the follow-

ing relation
4
: 

2
1

Ĕ
ij

d

d
N

i jc
i i

j ji

j

i
j i

q qk
f e d

m d

l
-

=
¸

å õ
æ ö=
æ ö
æ ö
ç ÷

ä  (8) 

where im  is the spacecraft mass, iq  and jq  are respectively the charges of the i-th and the j-th 

spacecraft and dl  is the Debye length, taking into account the shielding effects due to the space 

plasma. The vector ijd (see Figure 2): 

Ĕ
ij ij ij i jd d d d d= = - (9) 
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defines the distance between the spacecraft, with Ĕijd  the relevant unit vector joining  the i-th and 

j-th satellites. 

 

Figure 2. Distances among the spacecraft 

Note that the specific forces defined by Eq.(8) are internal ones and cannot produce variations in 

the center of mass of the formation: only changes of relative position among spacecraft are possi-

ble by using electrostatic forces.  

Equation (7) can be rearranged by taking into account Eq.(9) and considering all the possible 

spacecraft pairs in the formation. The resulting equations are representative of the dynamics of 

the ( )1 / 2N N-  virtual links, connecting all the spacecraft of the formation, and can be written 

as:  

( ) ( )2

0

2 2 2

,

0

1

Ĕ ĔĔ ĔĔ Ĕ Ĕ Ĕ2 3

1 1 1 1Ĕ Ĕ Ĕ
ij jkik
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ij R R R R ij R R R R ij

d dd
N

i j j ki k
c ij ik jk

ki j ij i ik j jk
k i j

d n r r d n r r h h d

q q q qq q
k e d e d e d

m m d m d m d

l l l

J J

- - -

=
¸

= - Ö + - Ö +

è øå õå õ
é ùæ ö+ + + -æ ö
æ öé ùæ ö
ç ÷ ç ÷é ùê ú

ä
 (10) 

The forces ruling the dynamics of each virtual link
18,19

 can be divided between the ñinternalò to 

the link (electrostatic action between the i-th and j-th spacecraft) and the external ones, which 

involve a spacecraft of the selected pair and another spacecraft in the formation. Figure 3 shows 

the virtual link between the 1st and the 2nd spacecraft: the internal action (in green) acts only 

along the joining direction between the two spacecraft, producing a variation of the length of the 

virtual link. On the other hand the ñexternalò forces (in red) can also produce a rotation or a trans-

lation of the virtual link by their components normal to the virtual link direction.  

 

Figure 3. Electrostatic forces acting to the virtual link joining Sat 1 and Sat 2 
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In fact we can be project Eq.(10)  along the Ĕijd  direction, the only one which the electrostatic 

force can act on, to obtain the following scalar equation of motion representing the axial dynam-

ics of a virtual link connecting the i-th spacecraft with the j-th spacecraft: 

( ) ( )

( ) ( )

2
2

0

2 2 2

2

1
,

Ĕ Ĕ ĔĔ3

1 1 1 1Ĕ Ĕ Ĕ Ĕ
ij jkik

d d d

ij ij ij R ij R

d dd
N

ij jkik
c ik ij jk ij

ki j ij i ik j jk
k i j

d n d d r d h

Q QQ
k e e d d e d d

m m d m d m d

l l l
- - -

=
¸

è ø= Ö - Ö +
é ùê ú

è øå õå õ
é ùæ ö+ + + Ö - Öæ ö
æ öé ùæ ö
ç ÷ ç ÷é ùê ú

ä

 
(11) 

where  ij i jQ q q= is the product between two satellite charges.  

The ( )1 / 2N N-  equations of motion, resulting by iteration of Eq.(11), can be represented in the 

state space form as follows
20

: 

X (X)X (X)U= +A B  (12) 

with the state vector is defined as: 

12 1, 12 1,X X X
T

T T

ij N N ij N N d d

T

d d d d d d- -
è øè ø= =ê úê ú

 (13) 

The plant matrix and the control distribution matrix can be detailed as: 

0
(X)

(X) 0

è ø
=é ù
ê ú

E
A

A
;      

0
(X)

(X)

è ø
=é ù
ê ú

B
B

 (14) 

where the term of the sub-matrix (X)A   and of the sub-matrix (X)B  are directly obtained by tak-

ing into account Eq.(11), and E is the identity matrix.  Finally, the control vector includes all the 

charge products: 

12 1,

T

ij N NU Q Q Q -
è ø=ê ú (15) 

FORMATION CONTROL STRATEGIES BY MEANS OF ELECTROSTATIC FORCES  

One of the most peculiar aspects of the system of equation of motion in Eq.(11) is that the 

control actions depend on the product of the charges between two interacting spacecraft and not 

on their individual values.  It is also clear that it would be impossible to act on a single spacecraft 

without affecting the others: a global guidance and control strategy is therefore the preferred op-

tion with respect to platformôs individual guidance.  

The analysis performed in the following is based on the architecture illustrated in Figure 4.The  

systemôs dynamics is represented by the Clohessy-Wiltshire equations of motion with the electro-

static forces (Eqs. (7)-(8)) and by an additional equation for each spacecraft of the formation de-

scribing the charge dynamics (Eq.(1)), with the relevant saturation limits on the currents (Eq.(2)) 

and the maximum and minimum allowable charges (Eq.(4)). The controller takes into account 

only the range and range rates among the spacecraft and, by means of the reduced set of equations 

of motion expressed by Eq.(12), computes the charge products needed to appropriately maneuver 

the spacecraft. The  charge distribution function takes into account these products and selects 

which one among them must be implemented first, avoiding impossible control realizations. The 

selection process is continuously reconsidered in order to track the evolution of the formation and 

to give the priority to larger errors with respect to the desired configuration.  The charge distribu-

tion provides as output the desired charges to each spacecraft. 

A low level controller, acting on each spacecraft, takes the desired charge value and the actual 

charge status of the satellite and computes the required current. The charging actuators will track 

the current commanded by the charge controllers and produce the ion or electron fluxes the 

charges and the electrostatic forces to accomplish the maneuver. 
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Figure 4. Architecture  of the control strategy 

Due to the highly non-linear dynamics which characterize the system, two non-linear for-

mation control strategies will be investigated in the following. Specifically a Lyapunov based 

control scheme and the SDRE technique are considered. The two global control strategies will be 

described first, them a switching strategy will be presented for the three spacecraft formation 

case. 

Lyapunov based control strategy 

This control strategy, which can be applied to the system of equation of motion represented by 

the Eq.(11), is based on the definition of the following Lyapunov function
9,10,11,21

: 

( )
2

2

1 1

1 1
0

2 2

N N
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ij ij ij ij

i j
j i

L k d d d
= =

¸

è ø
= - + ²é ù

ê ú
ää  (16) 

which is positive semi-definite and vanishes when the desired configuration is attained. Deriving 

Eq.(12) with respect to time offers 

( )
1 1

N N
p des

ij ij ij ij ij

i j
j i

L d k d d d
= =

¸

è ø= - +
ê úää  

(17) 

to be negative semi-definite in order to ensure the asymptotic stability of the system. It is possible 

to substitute Eq.(11) leading to the following expression: 

( ){ ( ) ( )

( ) ( )

2 2
2

0 2
1 1

2 2
1
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l l
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¸
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=
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 (18) 

The stability is granted by means of the position: 

2

1 1

N N
d

ij ij

i j
j i

L k d
= =

¸

=-ää  (19) 

which provides the following condition for each (i-th, j-th) couple of spacecraft: 
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( ) ( ) ( )
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1
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 (20) 

The set of Eq.(20) iterated for all the ( )1 / 2N N- pairs in the formation can be usefully recollect-

ed the following matrix expression: 

( ) ( )X X X X (X)X (X)U 0des des

P d D d ddd - + - + + =K K ȷ B  (21) 

where PK  and DK  is the gain matrix containing the p

ijk and d

ijk  in their diagonals. 

 Starting from the Eq.(21), the resulting control action reads as, if the matrix (X)B can be invert-

ed: 

( ) ( )1U (X) X X X X (X)Xdes des

P d Dd ddd

-è ø=- - + - +
ê ú

B K K ȷ  (22) 

It is worth to notice that Eq.(22) contains feedback terms. The stability of such control scheme 

will be proved by numerical simulations in next sections. In that section, it will be also shown 

that this control strategy cannot cancel the steady state errors, while ensuring the stability of the 

system. In order to correct this problem, an integrative term is added to Eq.(22), leading to the 

following control strategy: 

( ) ( ) ( )
0

1U (X) X X X X X X (X)X

t

des des des

I d P d dd d dD

t

d dt-
è ø

=- - + - + - +é ù
é ùê ú
ñB K K K ȷ  (23) 

where the matrix IK  is diagonal and contains the gains related to the integral terms. 

State dependent Riccati equation based control strategies 

A different, suitable methodology of control is based on the minimization of the following 

cost function: 

( ) ( )
0

X X (X) X X U (X)Udes des

t

T
TJ dt

¤

è ø= - - +
é ùê úñ Q R  (24) 

where (X)Q  is the matrix weighting the reachability of the desired state of the system and 

(X)R is the matrix weighting the control effort. 

The solution of the optimization problem is granted if the system is linear, which is not the cur-

rent case as all the matrices are state dependent. Recent advances in control research led to the 

development of the so called ñstate dependent Riccati equationò approach
22,23,24

, identifying a 

sub-optimal solution of the problem provided that the system of equations of motion could be 

written in a ñstate dependent coefficient formò (SDC form). Eq.(12) clearly satisfies this re-

quirement, therefore leading to the following control law: 

( )1U (X) (X) X XT des-=- -R B P  (25) 

where the (X)P  matrix is the solution of the ñtime variable state dependent Riccati equationò: 

(X) (X) (X) (X) (X) (X) (X) (X) (X)-= + - +T 1 T
P P A A P P B R B P Q (26) 

to be solved iteratively by using the Taylor series method
23

. the solution (X)P of Eq.(22) is found 

as sum of n matrices ( )0 1(X), (X), ... (X)nP P P , which can be calculated by the  following  proce-

dure
25

: 
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- to solve the algebraic Riccati equation by using the state depending matrices of the sys-

tem dynamics: 

0 0 0 0(X) (X) (X) (X) (X) (X) (X) (X) 0-+ - + =T 1 T
P A A P P B R B P Q  (27) 

- to refine the solution by solving the associated algebraic Lyapunov equation for the first 

order solution: 

( )( )1 0 0 1

0 0

(X) (X) (X) (X) (X) (X) (X) (X) (X) (X)

(X) (X) (X) (X) 0

- -- + - +

+ D +D =

T
1 T 1 T

P A B R B P A B R B P P

P A A P
 (28) 

- to solve the n-th order associated algebraic Lyapunov equation until the convergence of 

the solution: 

( )( )0 0

1

1 1

1

(X) (X) (X) (X) (X) (X) (X) (X) (X) (X)

(X) (X) (X) (X) (X) (X) (X) (X) 0

n n

n

n n j n j

j

- -

-
-

- - -

=

- + - +

+ D +D - =ä

T
1 T 1 T

T 1 T

P A B R B P A B R B P P

P A A P P B R B P
 (29) 

The resulting SDRE control can be finally found as follows: 

() ( )1

0

U X (X) (X) X X d
N

n

eT

n

s-

=

=- -äR B P  (30) 

SWITCHING STRATEGIES FOR THREE SPACECRAFT FORMATIONS  

The global strategy returns as output the products ijQ  among the spacecraft charges required to 

perform the maneuvers and does not solve completely the guidance problem. A charge distribu-

tion law is necessary  to uniquely identify a charge value iq , which satisfies the product charges 

ijQ  obtained by the higher level controller, solves for the possible ambiguities on distributing the 

charges, and avoids not implementable or destabilizing cases, with the last issues arising when the 

number of the spacecraft involved is higher than two. Let us make an example by using three 

spacecraft labeled as i, j, k, and forming an equilateral triangle as depicted in Figure 5. 

 

Figure 5. Three spacecraft formation dimension reduction  

A simultaneous reduction of the sides of the triangle is not physically implementable. Indeed, if 

we suppose the sign of the charge of the spacecraft i as positive, the second satellite (j) will have 

a negative charge, and requires the positive sign of the third spacecraft (k) to reduce the two sides 

ending in j. However, the first and the third satellite charges ends up to have the very same sign, 

producing an increase of the distance between them. The considered controllers do not take into 

account this impossibility and provides as output a vector including three negative products. The 

problem can be solved by selecting only two of the three charge products as driving parameters 
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and by violating the remaining constraint
9
. Accordingly, the selected links will reduce their length 

but the remaining one will probably increase it. In order to assure a global convergence to the 

desired shape, the selection of the governing charge products must change periodically. Denoting 

as 
swtD  the switching period, an evaluation of cost functions at times( )0 1,2...sw swt m mt t= D+ =  

will be required to iterate the selection of the active constraints. Specifically, the differences be-

tween actual and desired distances among the spacecraft can be adopted as selection criteria. The 

cost functions will conveniently read as: 

( )
21

2
ij ij

des

ijE d d= -      ( )
21

2
jk jk

des

jkE d d= -       ( )
21

2

des

ki ki kiE d d= -  (31) 

and the link to exclude will be the one offering the minimum value of the functions in Eq.(31). 

The remaining two links will drive the charge distribution algorithm with their associated charge 

products which will be enforced (hard constraints) during the charge distribution process.  

OPTIMAL CHARGE DISTRIBUTION TO THE SPACECRAFT  

Both the previous control approaches provide as output the charge products, but they do not 

give any information about the distribution of these charges to the spacecraft. Different distribu-

tion strategies have been studied in the past, satisfying different requirements. One of the most 

common requirements is the minimization of the spacecraft charge, in order to avoid breakdowns 

with the outer space plasma. This problem can be seen as a constrained optimization one
26

, which 

can be analytically solved only in some simpler cases. In the following the cases of two and three 

spacecraft formation will be analyzed in detail. The two spacecraft distribution problem is dis-

cussed and solved first. However, the distribution problem becomes more complicates if the for-

mation has three or more spacecraft: a general solution is not available, and a reduced optimality 

problem, respecting only two (out of three) charge product constraints will be therefore presented. 

Two spacecraft optimal charge distribution 

Given the charge product ijQ  between two spacecraft, the condition of minimum charge dis-

tribution can be obtained analytically by minimizing the following cost index: 

2 21 1

2 2
i jV q q= +  (32) 

subject to the product charge constraint obtained from the controller: 

0ij i jQ q q- = (33) 

By introducing the Lagrange multiplier ijl, it is possible to write the following Hamiltonian func-

tion: 

2 21 1

2 2
ij iji j jiH q q Q q qlè ø= + + -ê ú (34) 

The necessary condition for assuring the optimal choice of the charges can be written as follows: 

0 0 0j j i j

j

i ij ij ij i

i ij

H H H
q q q q Q q q

q q
l l

l

µ µ µ
= - = = - = = - =

µ µ µ
  (35) 

This system of equations can be solved analytically by evaluating ijlfrom the first equation 

and substituting it, together with the third equation, into the second one, as: 

( )( )2 2 0
iji

ij j ij ii j

j i

i

Qq
q q Q q Q

q q
l= = + - =  (36) 
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Concerning the solution of Eq.(36), the driving parameter is the product ijQ  which can assume 

either positive or negative values. In both the cases the rightmost relation in Eq. (36) has two real 

and two imaginary roots. Real values are clearly the only suitable ones for the spacecraft charges, 

leading to two possible sets: 

) ( ) ( )

) ( ) ( )

ij

i ij ij ij ij ij

ij

ij

i ij ij ij ij ij

ij

j

j

Q
a q Q q sign Q Q sign Q

Q

Q
b q Q q sign Q Q sign Q

Q

l

l

= = = =

=- =- =- =

  (37) 

where 
ijQ  represents the absolute value of ijQ  and ( )ijsign Q  assumes as output 1+ if 0ijQ >  

and 1-  if 0ijQ < . The indetermination between the two sets is due to the selection of which sat-

ellite must be charged positively or negatively when an attractive force is required ( )0ijQ < , or 

whether both satellites must have positive or negative charges when a repulsive force is needed 

( )0ijQ > . The charge distribution function must select once for all one of the options once and 

then maintain this choice, to avoid the jumps that produce chattering and to limit the power re-

quired to perform the maneuver.  

Three spacecraft optimal charge distribution  

Let us consider a formation of three spacecraft, which will be labeled as i, j, k. As in the two 

spacecraft case, we look for the minimum charge distribution respecting two of the three con-

straints imposed by the controller.  

The following cost function must be minimized:  

2 2 21 1 1

2 2 2
i j kV q q q= + +  (38) 

together with two constraints on the charges. Without loss of generality we select the following 

two constraints:     

0ij i jQ q q- =;      0jjk kQ q q- =;       (39) 

Such a choice imposes constraints on the virtual links joining the i-th with the j-th spacecraft and 

the j-th with the k-th spacecraft: it is the appropriate choice if  the cost function 
kiE  is the mini-

mum among the ones in Eq.(31), i.e. if the i-th and k-th spacecraft are the closest ones. 

By introducing the Lagrange multipliers ijl and jkl , it is possible to add the constraints to 

Eq.(38), obtaining the following Hamiltonian function: 

2 2 21 1 1

2 2 2
ij iji j k j k k kj ji jH q q q Q q q Q q ql lè ø è ø= + + + - + -ê ú ê ú (40) 

The necessary conditions for the optimality lead to the following system of equations: 

0

0

0

i ij

i

ij jk

jk

j

j i k

j

k j

k

H
q q

q

H
q q q

q

H
q q

q

l

l l

l

µ
= - =

µ

µ
= - - =

µ

µ
= - =

µ

        

0

0

jij i

ij

j kk

jk

j

H
Q q q

H
Q q q

l

l

µ
= - =

µ

µ
= - =

µ

 (41) 
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After some algebra, the solution of the system of equation in Eq.(41) leads to the following rela-

tions: 

i
ij

j

q

q
l=       k

jk

j

q

q
l =       

j

i

j

iQ
q

q
=    

k

k

j

jQ
q

q
=           

2 2 2

j i kq q q= +  

(42) 

that provide the following two real solutions, suitable for implementation: 

2 2

2 2 2 2

2 2

2 2 2 2

)

)

j ij jk i k

ij jk ij jk

j ij jk i k

ij jk i

ij jk

ij j

j j

k

k

Q Q
a q Q Q q q

Q Q Q Q

Q Q
b q Q Q q q

Q Q Q Q

= + = =
+ +

=- + =- =-
+ +

  (43) 

As in the previous case, there is an indetermination about the sign of the charge to be associated 

on the j-th spacecraft. The other two cases, which take into account the other two combinations of 

the constraints, can be obtained by following the same procedure.   

NUMERICAL RESULTS  

Several numerical simulations have been performed in order to evaluate the effectiveness of the 

proposed control and charging strategies. The case of a formation of satellites in a GEO orbit 

( 42000Rr km= ) is the selected scenario, because the Debye length in this orbit (which is 

generally included in the range 100 1000dm ml¢ ¢ , set to 100d ml=  in the tests) allows the 

success of formation acquisition and maintenance maneuvers with relatively low efforts in term 

of charge magnitudes.  

The considered formation is composed by satellites having equal mass ( )500im kg= . The 

charge distribution is assumed to be uniform, under the hypothesis that the spacecraft can be con-

sidered  spherically-shaped with a radius 1iR m= . The charging capability of each satellite is lim-

ited by the maximum allowable currents ( 1si Am+=  and 1si Am-=- ) and by the charge saturation 

limits ( 50sq Cm+=  and 50s Cq m-=- ), corresponding to a spacecraft capacitance approximately 

equal to 0.1iC pF= . Only electrostatic actions among the spacecraft are taken into account, and 

therefore not all the degrees of freedom of the system are controlled, leaving to further analysis 

the possibility to integrate this control methodology with other kind of propulsion. 

The analysis involves the cases of two and three satellites formations and, starting from an ini-

tial inter-spacecraft distance 0ijd , aims to the following mission goals: 

- formation acquisition: to reach a desired distance des

ijd  between the spacecraft in a given 

maneuver time acqT . 

- formation maintenance: to maintain the desired distance des

ijd  between the spacecraft for 

an additional  time period mntT . 

Two spacecraft formation case 

Initial positions and velocities with respect to the LVLH reference frame  are 
0

1 [48.5,8.5,8.7]d m= , 0

2 [ 48.5, 8.5, 8.7]d m= - - - , 0

1 [0,0,0] /V m s=  and 0

2 [0,0,0] /V m s= , cor-

responding to an initial distance 012 100d m= , and the goal of the mission is to achieve a relative 
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distance of 
12 50desd m=  in 12acqT h=  (half GEO orbit period) and to maintain this distance along 

an additional 12mntT h= . The Lyapunov based control in Eq.(22) is adopted first, with the gains  
6

12 3.0 10pk -= Ö  and 2

12 3.0 10dk -= Ö , which have been selected by a trial-and-error process (an op-

timized procedure for gain selection is exposed in 
20

). The path of the trajectories followed by the 

two spacecraft are represented in Figure 6, together with the distance vector joining them. Start-

ing from their initial positions, the spacecraft approach each other by rapidly reducing their mutu-

al distance till the desired value is reached, and then maintain the desired configuration until the 

end of the maneuver, as reported in Figure 7. It is clear that the virtual link between them begins 

to oscillate around the radial direction (as a rigid body under the gravity gradient actions). This 

special motion is due to the choice of particular initial condition and controller gains, which leads 

the system to remain near the stable position of the gravity gradient field. 

The values of the charges needed to perform this maneuver are reported in Figure 8. It is 

worth to notice that the most demanding phase in terms of the spacecraft charge magnitudes is the 

acquisition, when the spacecraft have to be charged up to their saturation limits.  Once the inter-

spacecraft distance goal is almost achieved, the charges reduce to about 20 Cm . The maintenance 

phase still needs a residual level of charges applied to the spacecraft (about 10 Cm ), because an 

electrostatic force will be needed to keep this  configuration otherwise unattainable in free dy-

namics.  

The required power, computed by means of Eq.(5), is surprising low: the largest needs in 

terms of power consumption are associated with the first hour of the maneuver  when the space-

craft will charge in few minutes up to their saturation limits, to rapidly discharge themselves later 

as soon as the distance is remarkably reduced. On the other hand, for the formation maintenance 

phase the needs in power are very low, as shown in the bottom plot of Figure 9, and related to the 

charge modulation already visible in Figure 8:  only 23.5J energy are required to perform the 

entire maneuver.  

 

Figure 6. Path of trajectories of the two spacecraft librating formation   

 

Figure 7 Inter -spacecraft distance for the two spacecraft librating formation 
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Figure 8. Spacecraft charges for the two spacecraft librating formation 

 

Figure 9. Required power for two spacecraft librating formation 

The specific configuration obtained is one among several possibilities for a two spacecraft 

formation. In fact, different gains of the controller will generate a different behavior, even starting 

from the same set of initial conditions and targeting the very same mission requirements. The tra-

jectories corresponding to the gains 6

12 5.0 10pk -= Ö  and 2

12 1.0 10dk -= Ö  are represented in Figure 10 

with the two spacecraft that, after a sudden approach, begin to rotate with respect the center of 

mass of the entire system. The relevant behavior of the charges is shown in Figure 11, where it is 

possible to notice that after the saturation phase (which produces an attractive force) the second 

satellite changes the sign of its charge to create a repulsive action. The steady state is reached be-

fore the required 12acqT h=  and the charges are slightly modulated to counteract the variable in-

ertial actions. The effects of the centrifugal actions are also present in Figure 12, where the dis-

tance between the two spacecraft approaches rapidly the desired value without actually reaching 

it. The steady state error can be explained as the controller is not designed to tackle centrifugal 

actions. The same rotating behavior can be obtained as an example by the SDRE control, with the 

following gain matrices (see Eq.(24)): ( )12 12diag [ , ]p dk k=Q  and 12

uk=R , with 8

12 10pk -= , 

6

12 10dk -= , 1

12

210uk += (plots not reported). The energy required amounts to 29.7J  for the SDRE 

case and 14.7J for the Lyapunov based control (values referred to each single spacecraft). 

In order to reduce the steady state error it is possible to add to the controller an integral term, 

as done in the Eq.(23) with the gain 1

12

010ik -= . Such a choice is successful as shown in Figure 13, 
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even if it does involve several changes in the sign of the charge of the second spacecraft (Figure 

14).  

 

Figure 10. Path of the trajectories of the two spacecraft rotating formation  

 

Figure 11. Charge distribution during the rotating formation case (Lyap+PD) 

 

Figure 12. Inter-spacecraft distance during the rotating formation case (Lyap+PD) 

 

Figure 13. Inter-spacecraft distance during the rotating formation case (Lyap+PID) 
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Figure 14. Charge distribution during the rotating formation case (Lyap+PID) 

 

Three spacecraft formation case 

The scenario consists of three spacecraft  whose initial positions and velocities with respect to 

the LVLH reference frame  are 0

1 [ 50.0, 28.9,0.0]d m= - - , 0

2 [50.0, 28.9,0.0]d m= - , 

0

3 [0.0,57.7,0.0]d m= , 0

1 [0,0,0] /V m s= , 0

2 [0,0,0] /V m s=  and 0

3 [0,0,0] /V m s= , with starting 

distances among the spacecraft 0 0 0

12 23 31 100d d d m= = = , corresponding to an equilateral triangle 

shape. The goal of the mission is to reduce these distances to 12 23 31 50des des desd d d m= = =  in half 

GEO orbit period ( 12acqT h= ) and to maintain them during an additional time interval 

12mntT h= . As previously discussed, it is impossible to simultaneously reduce the lengths of all 

the links. A suitable control strategy is represented in Figure 4: this scheme takes into account the 

solutions given by the global controllers (Lyapunov or SDRE) and selects to chase, by means of 

the evaluation of the error functions in Eq.(31), only two out of the three products of charges. The 

periodic switch among these constraints ensures the convergence. The switching time interval 

swtD  becomes the key parameter, to be selected in order to trade-off between two opposite goals: 

swtD  cannot be too small in order to limit the chattering phenomena, nor too large in order to 

avoid that the uncontrolled virtual link of the formation remains uncorrected during the next 

switch phase. In particular the effects of three different switching periods 

( 1min,10min,30minswtD = ) are analyzed. 

  In Figure 15 the evolution of the formation for the 30minswtD = case is represented, with the 

corresponding trends of the cost functions (Eq.(31)) reported in Figure 16. A pseudo-steady trend 

will be achieved after about 6 hours (see Figure 17), approaching the desired value of the inter-

satellite distances  with a remaining, limited chatter due to the continuous switching. The inver-

sions in chargesô sign are easily noticeable in Figure 18, together with the saturation boundsô ef-

fects. Figure 19, where spikes of 1 Am° appear periodically at every switch, plots the relevant cur-

rents. As a result, also the required power has an impulsive envelope, as shown in Figure 20. 
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Figure 15. Paths of the trajectories for the three spacecraft maneuver ( 30minswtD = ) 

 

Figure 16. Cost functions of the switching strategy 

 

Figure 17. Distances among the spacecraft during the acquisition maneuver 
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Figure 18. Charges during the acquisition maneuver of three spacecraft formation 

 

Figure 19. Ion/electron fluxes during the acquisition maneuver. 

 

Figure 20. Required power for the three spacecraft acquisition maneuver 

Two other switching intervals have been considered. Figure 21 reports the trajectories during 

the acquisition maneuver corresponding to 10minswtD = . It is worth to notice that the paths are 

now smoother, as the uncontrolled side of the triangle has a shorter time to degenerate, and the 

deviations from the nominal value are therefore smaller in magnitude with respect to the previous 

case. On the other hand the acquisition maneuver (obtained with the same gains) takes a time 

longer than before (see Figure 22), requiring all the 12 hours devoted to this phase. In Figure 22 a 

remarkable reduction of the chattering is also visible and the formation maintains itself close to 

the desired configuration. These better results are paid in terms of required rapidly in charge 
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changing, leading to higher power/energy needs to perform the maneuver, as proofed by Figure 

23. 

 

Figure 21. Paths of the trajectories for the three spacecraft maneuver ( 10minswtD = ) 

 

Figure 22. Distances among the spacecraft during the acquisition maneuver 

( 10minswtD = ) 

 

Figure 23. Charges during the acquisition maneuver ( 10minswtD = ) 

The best result, in terms of a smooth behavior, has been obtained with the switch interval 

1minswt =D . Relevant spacecraft trajectories are reported in Figure 24, where the edges which 

characterized the previous cases disappear. The same regular behavior is present in Figure 25, 

where the inter-spacecraft distances are plotted, and the three sides of the triangle configuration 

can be seen reducing almost simultaneously their length. This performance is paid in terms in 



 20 

energy consumption, as reported in Table 1: the cost increases as the switching period decreases, 

due to the frequent, sudden variation in currents.  

The analysis shows how the electrostatic control can be applied with reasonable efforts in 

terms of power and energy, especially if the requirements in distances are of the order of the me-

ter. It is also clear that if the strategy easily fits strict requirements on the inter-satellite distancesô 

accuracy.  

 

 

Figure 24. Paths of the trajectories for the three spacecraft maneuver ( ) 

 

 

Figure 25. Distances among the spacecraft during the acquisition maneuver( ) 

 

 

Table 1 Energy consumptions 

Switching time Satellite 1 Satellite 2 Satellite 3 

30 min 685.9 J 691.6 J 707.8 J 

10 min 1801.4 J    1777.3 J     1739.9 J 

1 min 5836.0 J      5777.6 J 6091.9 J 

 

 


