Impact Hazard Assessment for 2011 AG5
Paul W. Chodas, Steven R. Chesley and Donald K. Yeomans
(JPL/Caltech)

2013 IAA Planetary Defense Conference
15-19 April 2013, Flagstaff, Arizona
2011 AG5 Earth Impact Risk Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torino Scale (maximum)</td>
<td>1</td>
</tr>
<tr>
<td>Palermo Scale (maximum)</td>
<td>-1.01</td>
</tr>
<tr>
<td>Palermo Scale (cumulative)</td>
<td>-1.00</td>
</tr>
<tr>
<td>Impact Probability (cumulative)</td>
<td>2.0e-03</td>
</tr>
<tr>
<td>Number of Potential Impacts</td>
<td>4</td>
</tr>
<tr>
<td>V_{impact}</td>
<td>14.67 km/s</td>
</tr>
<tr>
<td>V_{infinity}</td>
<td>9.55 km/s</td>
</tr>
<tr>
<td>H</td>
<td>21.8</td>
</tr>
<tr>
<td>Diameter</td>
<td>0.140 km</td>
</tr>
<tr>
<td>Mass</td>
<td>4.1e+09 kg</td>
</tr>
<tr>
<td>Energy</td>
<td>1.1e+02 MT</td>
</tr>
</tbody>
</table>

Analysis based on 210 observations spanning 316.77 days (2010-Nov-08.629742 to 2011-Sep-21.398727)

Orbit diagram and elements available [here](http://neo.jpl.nasa.gov/risk/).

These results were computed on Mar 31, 2012

2011 AG5 Earth Impact Table

<table>
<thead>
<tr>
<th>Date</th>
<th>Distance (r_{Earth})</th>
<th>Width (r_{Earth})</th>
<th>Sigma Impact</th>
<th>Sigma LOV</th>
<th>Stretch LOV</th>
<th>Impact Probability</th>
<th>Impact Energy</th>
<th>Palermo Scale</th>
<th>Torino Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>YYYY-MM-DD</td>
<td>(r_{Earth})</td>
<td>(r_{Earth})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040-02-05</td>
<td>0.31</td>
<td>1.04e-03</td>
<td>0.000</td>
<td>0.26494</td>
<td>3.70e+02</td>
<td>2.0e-03</td>
<td>1.05e+02</td>
<td>-1.01</td>
<td>1</td>
</tr>
<tr>
<td>2043-02-04</td>
<td>0.56</td>
<td>< 1.e-04</td>
<td>0.000</td>
<td>0.24025</td>
<td>1.39e+06</td>
<td>4.6e-07</td>
<td>1.05e+02</td>
<td>-4.68</td>
<td>0</td>
</tr>
<tr>
<td>2045-02-04</td>
<td>0.52</td>
<td>1.01e-03</td>
<td>0.000</td>
<td>0.09607</td>
<td>5.53e+04</td>
<td>1.2e-05</td>
<td>1.05e+02</td>
<td>-3.29</td>
<td>0</td>
</tr>
<tr>
<td>2047-02-04</td>
<td>0.57</td>
<td>9.82e-04</td>
<td>0.000</td>
<td>0.37496</td>
<td>1.69e+05</td>
<td>3.6e-06</td>
<td>1.05e+02</td>
<td>-3.84</td>
<td>0</td>
</tr>
</tbody>
</table>
Background - 2011 AG5 in late 2011

- Discovered Jan. 2011 by Catalina Sky Survey
 - Pre-discovery obs. by Pan-STARRS dated Nov. 2010
 - Observations still covered only ~half of 625 day orbit
 - Asteroid was unobservable for a long period of time
- Earth impact probability: 1-in-500 for Feb. 5, 2040
 - Impact requires passage through 365 km keyhole on Feb. 3, 2023
 - Post-keyhole deflection is ~50x harder than before 2023
- In 2012, JPL did a full study to answer the key question:
 - If we wait until AG5 is observable again, and it turns out to be on a collision course, is there enough time to design, build, launch and execute a deflection mission before it passes through the keyhole in 2023, a time span of possibly 3
Heliocentric Orbit of 2011 AG5

Orbit of 2011 AG5 intersects Earth's orbit

Sun

Mars

Earth

2011 AG5
Impact Prob.: 1/500

Uncertainty in 2011 AG5’s position along its orbit on Feb. 5, 2040
Uncertainty Region at a Close Approach
2011 AG5 Uncertainty Region in 2023 b-plane

10,000 Monte Carlo points trace the uncertainty region

Keyhole size: ~365 km
2011 AG5 Keyhole in 2023 b-plane

10,000 Monte Carlo points trace the uncertainty region

Keyhole size: ~365 km
Position of 2011 AG5 in a Rotating Reference Frame
“Future” Observing Opportunities

<table>
<thead>
<tr>
<th>Date</th>
<th>Brightness (mag)</th>
<th>Solar Elong. (deg)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct. 2012</td>
<td>24.5</td>
<td>42</td>
<td>Requires Keck. ‘MKO12’</td>
</tr>
<tr>
<td>Apr. 2013</td>
<td>25.5</td>
<td>50</td>
<td>Requires HST. ‘HST13’</td>
</tr>
<tr>
<td>Sep. 2013</td>
<td>23.6</td>
<td>175</td>
<td>Requires 2-4m aperture</td>
</tr>
<tr>
<td>Nov. 2015</td>
<td>22.9</td>
<td>170</td>
<td>Requires 2-4m aperture</td>
</tr>
<tr>
<td>June 2016</td>
<td>22.9</td>
<td>85</td>
<td>Requires 2-4m aperture</td>
</tr>
<tr>
<td>Sep. 2018</td>
<td>23.1</td>
<td>175</td>
<td>Requires 2-4m aperture</td>
</tr>
<tr>
<td>Oct. 2020</td>
<td>23.5</td>
<td>172</td>
<td>Requires 2-4m aperture</td>
</tr>
<tr>
<td>Feb. 2023</td>
<td>14.3</td>
<td>135</td>
<td>Radar Opportunity</td>
</tr>
</tbody>
</table>

- Oct. 2012 obs. require large aperture & favorable conditions
 - (In fact obtained by Tholen et al. using Gemini 8m and UH 2.2m)

- April 2013 HST observations
 - Would require advance characterization of star field

- “Normal” observations begin in Sept 2013
 - First observations likely in early August
Maximum Impact Probability vs. Time

Assumes 2011 AG5 is actually on an impact course.
• Secondary keyholes exist but are < 100 m down to a few meters wide.
• Safe harbor zones: -8,000 km to -1,500 km on left & +2,00 km to +12,00 km on right.
• Left safe harbor is preferred because it corresponds to front side impact by S/C.
Deflection Campaign (see poster by Damon Landau)

- Kinetic impactor deflection with observer spacecraft
 - Examine both chemical & solar electric propulsion (SEP) missions
 - Require precursor rendezvous spacecraft arriving >2 months before impactor to aid targeting and confirm successful deflection

- Tune spacecraft mass to obtain the desired deflection
 \[\Delta V = \frac{\beta}{M} \cdot \frac{V_\infty}{m} \]
 - \(\beta \) is the momentum enhancement due to impact ejecta (likely range: 1 to 4)
 - \(M \) is the mass of the asteroid
 - Take safety factor of 10 on \(\beta/M \), and so strive for >10 \(R_E \) deflection
 - But if \(\beta/M \) is much higher than expected could lead to a deflection approaching 100 \(R_E \)

- Without early reconnaissance it may be impossible to ensure that deflection moves asteroid to a “safe harbor” (8-44 \(R_E \))
Mission Timelines

Phase A/B

Phase C/D

Chem Rend.

Chem. Imp.

SEP Missions

Maximum Impact Probability

Baseline

With MKO12

With HST13

With 2021 RZ S/C

Year

Post Keyhole Mission Designs

Post keyhole missions are ~50 more challenging but there are viable rendezvous/deflection options after 2023 that could be carried out with existing launch vehicles.

Backup in case pre-keyhole missions unsuccessful

Both chemical and SEP propulsion options are available
Post-Keyhole Deflection Options (Delta IV Heavy)

Impact Δb, Earth radii

Launch Year

Arrival Year

2024 2026 2028 2030 2032 2034 2036 2038 2040

2024 2026 2028 2030 2032 2034 2036 2038 2040
Key Conclusions from the 2012 Report:

- If 2011 AG5 really is on an collision trajectory, the next observations will cause the impact probability to jump to ~10% or more.
- In the unlikely case where the 2012/2013 observations do not eliminate the potential hazard, there is time to plan and carry out a pre-keyhole rendezvous and deflection mission from that point.
- There exist numerous viable rendezvous/deflection mission options both before and after keyhole in 2023.
- The full report is available online: http://neo.jpl.nasa.gov
Postscript: Uncertainty Region Before 2012 Obs.
Postscript: Uncertainty Region After 2012 Obs.

2011 AG5: Position Uncertainty for 2040 Earth Encounter

- Region of Uncertainty
- Earth
- Moon’s orbit
- Direction of Motion Relative to Earth
- Earth’s orbit

10M km