A Concept of Hazardous NEO Detection and Impact Warning System

Toshinori Ikenaga(1), Yohei Sugimoto(2), Matteo Ceriotti(3), Makoto Yoshikawa(4), Hitoshi Ikeda(5), Nobuaki Ishii(6), and Masayoshi Utashima(7)

(1)JAXA/RDD, 2-1-1, Sengen, Tsukuba, Ibaraki, 305-8505, Japan, +81 50 3362 4109, Ikenaga.toshinori@jaxa.jp
(2)JAXA/RDD, 2-1-1, Sengen, Tsukuba, Ibaraki, 305-8505, Japan, +81 50 3362 8898, sugimoto.yohei@jaxa.jp
(3)University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom, Matteo.Ceriotti@glasgow.ac.uk
(4)JAXA/ISAS, 3-1-1, Yoshinodai, Chuoku, Sagamihara, Kanagawa, 252-5210, Japan, +81 50 3362 3983, yoshikawa.makoto@jaxa.jp
(5)JAXA/RDD, 2-1-1, Sengen, Tsukuba, Ibaraki, 305-8505, Japan, +81 50 3362 4143, ikeda.hitoshi@jaxa.jp
(6)JAXA/ISAS, 3-1-1, Yoshinodai, Chuoku, Sagamihara, Kanagawa, 252-5210, Japan, +81 50 3362 3591, ishii.nobuaki@jaxa.jp
(7)JAXA/RDD, 2-1-1, Sengen, Tsukuba, Ibaraki, 305-8505, Japan, +81 50 3362 6262, utashima.masayoshi@jaxa.jp

Keywords: Hazardous NEO, early detection, AEP, orbit estimation, impact warning

This paper addresses on a concept of hazardous NEO detection and impact warning system utilizing a space telescope. In this concept, the space telescope observes near-Earth region from deep space and detects NEOs in-coming to Earth, estimate the impacting area and raise alarm to evacuate before the impact.

In 2013, the well-known Chelyabinsk meteor entered the Earth’s atmosphere over Chelyabinsk, Russia, and exploded at roughly 20 kilo-meters above the Earth’s surface, which damaged the buildings and injured residents. The estimated size of NEO is only 20 meters. Because of the size and in-coming direction from the Sun, the Chelyabinsk meteor could not be detected until its impact from the ground-based observatories. Considering such situations, this concept focuses on the detection of Chelyabinsk-class small NEOs which are hardly discovered before the Earth impacts. The destructions caused by such small size NEOs are limited, however it has potential to injure many people, and in the worst case, it could take human lives. The concept aims to construct an early detection and impact warning system, in the same manner of “Tsunami” warning.

To achieve the mission objective, Artificial, Equilibrium Point, AEP is assumed to be used as the space telescope installation point in this study. AEP is literally artificially equilibrated point by Sun and Earth gravity, centrifugal force and low-thrust acceleration. The magnitude of the acceleration to keep AEP is sufficiently small near 1 au radius orbit around the Sun i.e., the order of μm/s² which can be achieved by solar sail. Through some cases of numerical simulations considering the size of NEOs and detector capability, this paper will reveal the feasibility of the proposed concept.