2019 PLANETARY DEFENSE CONFERENCE
COLLEGE PARK, MARYLAND

DETECTION OF SMALL IMPACTING ASTEROIDS WITH ATLAS

LARRY DENNEAU, JR., UNIVERSITY OF HAWAII
ARI HEINZE, UNIVERSITY OF HAWAII
WITH J. TONRY, H. FLEWELLING, AND H. WEILAND
Asteroid Terrestrial-impact Last-alert System

- Concept described in Tonry et al. 2011, funded by NEOO in 2013
- 0.5 m f/2 Schmidt covering 30 deg² (7.5° FOV illuminating 5.4° × 5.4°)
- Optimized for maximum AΩ per unit cost and fast cadence. 2 years, $1M to replicate
- Currently two operating in Hawaii
- Open every clear night, 10⁸ obs/night, 0.5 TB/night
- Tonry et al. 2018 PASP for full details
Asteroid Terrestrial-impact Last-alert System

• 110 Mpixel STA1600 detector, 4” PSF, 2” pix scale
• Broadband “c” and “o” filters (moon-dependent)
• 10,000 deg² × 4 visits / night, \(m = 19.5 \)
• Gaia astrometry, Pan-STARRS photometry
• Simple scheduling — declination bands observed in “quads” (4 exposures separated by ~15 min)
• Observed impactor 2018 LA in routine ops
• Robotic, automated
 • must handle interruptions for self-followup, external requests
 • real-time weather/failure corrections

• Carefully designed for characterization
 • well-calibrated, 1% photometry, 0.1" routine
 • “righteous” 5σ limiting magnitude for every exposure
 • wide-field cloud correction
 • MBAs for moving object detection efficiency (with caveats)
What are we missing?

\[P_{\text{obs}} = P_{\text{real}} \times \text{eff} \]

ATLAS: focus on near-impacting asteroids
\((d < 0.05 \text{ AU})\) instead of general population census
• 452 days of ATLAS observing (2 sites)
• Granvik 730,000 asteroids H<25
• 42 billion Granvik clones 25<H<30
• Simulated at pixel level, including trails/streaks, re-subtraction of 500,000 exposures (20 CPU years)
• Fully reprocessed through MOPS pipeline
SIMULATION DESIGN

57904 – 58356 (452 days)
01 JUN 2017 – 26 AUG 2018

Nights visited
Deficit: unmodeled system losses (lightcurves, followup)
ENCOUNT VELOCITIES

Asteroids approaching within 0.05 AU of Earth

$H = 20-23$
140 m

$H = 23-25$
75 m

$H = 25-28$
20 m

Large bias against large encounter velocities, especially for small objects!
TAKEAWAYS

• 0.05 AU imminent impactor view is useful (vs population)

• $N(H<27) = 10^7$ (Trilling et al. 2017 $N=10^6$, Valdes 2019 $N=10^8$)

• Tunguska-like impact rates of 1 per 766 yr (preliminary)

• Additional ATLAS telescopes in South Africa and Chile will address short visibility windows, fill entire night sky (coming late 2020)

• Followup efficiency still hard to model

Learn more at fallingstar.com