Impact Simulations of the Double Asteroid Redirection Test (DART) – Results from the HERA Impact Simulation Group

R. Luther\(^1,2\), M. Jutzi\(^3\), K. Wünne\(\text{mann}^\text{1,2},\) M. Boustie\(^4,5\), G. S. Collins\(^6\), T. M. Davison\(^6\), D. Hebert\(^7\), B. Jodar\(^7\), T. Maindl\(^8\), E. Martellato\(^1\), S. Raducan\(^6\), C. Schäfer\(^9\), D. Zagouri\(^4\), and the HERA modelling group

\(^1\)Museum für Naturkunde Berlin -Leibniz Institute for Evolution and Biodiversity Science (Germany), \(^2\)Freie Universität Berlin (Germany), \(^3\)Universität Bern (Switzerland), \(^4\)SimChoc (France), \(^5\)Université de Poitiers (France), \(^6\)Imperial College London (UK), \(^7\)CEA CESTA (France), \(^8\)Universität Wien (Austria), \(^9\)Eberhard Karls Universität Tübingen (Germany)

R.L. acknowledges the PDC scholarship

01. May 2019
robert.luther@mfn.berlin
HERA mission

▶ ESA’s contribution to AIDA
▶ Launch planned for 2023/2024, arrival after the DART impact
▶ **Goal:** characterisation of the binary system, the moon and the DART crater
HERA Impact Simulation Group

› Chairs: K. Wünneemann (MfN Berlin)
 M. Jutzi (Universität Bern)

› Members of planetary science / astronomy community
 (cratering, collisions, small bodies, ...)

› Hypervelocity impact & engineering community:
 › Fraunhofer EMI
 › SimChoc
 › CEA

› Modelling (ALE, SPH,...)

› Experiments
HERA Impact Simulation Group

› Laboratory Experiments

› Numerical Modelling

› measured ejection parameters

› ground truth to validate models

› Combine advantages of both methods

› systematic parameter study possible

› scale to natural sizes
Goals of Impact Simulation Group

› Predict impact outcome:
 - Complimentary to DART studies -
 › Efficiency of momentum transfer β

› Range of expected crater morphologies and properties of the surrounding surfaces

Efficiency $\beta = \frac{\text{Didymoon mass} \times \Delta V}{\text{momentum}}$

Morphology: example for 40% porosity and large coefficient of friction (1.0) (Luther et al. 2017)
Benchmarking of Shock Physics Codes: Case I

- DART Benchmark study (Stickle et al., submitted) - additional results:
 - impact of Al on Al
 (strengthless vs constant strength)
- 3 grid Codes (ALE):
 - iSALE (Tillotson EoS)
 - CEA-HESIONE (Tillotson EoS)
 - SimChoc-RADIOSS (Mie-Grüneisen EoS)
Benchmarking of Shock Physics Codes: Case I

Additional results to the DART benchmark study (Stickle et al.):

$D_{\text{hydro}} = 4.4 \pm 1\%$

$D_Y = 2.3 \pm 4\%$

$\text{in agreement with DART benchmark;}$

Next step: compare β

$\text{d}_{\text{hydro}} = 2.6 \pm 2\%$

$\text{d}_{\gamma} = 1.2 \pm 4\%$
Benchmarking of Shock Physics Codes: Case II

- Simulation of DART impact
 - Target: asteroid Didymos B:
 - Diameter ≈ 160 m
 - Impactor: DART spacecraft
 - Impact angle: head-on
- **Goal:** illustrate differences in results due to:
 - different approaches (code, modeller)
 - assumptions regarding target properties

\[m = 500 \text{ kg} \]
\[v = 6 \text{ km/s} \]
Benchmarking of Shock Physics Codes: Case II

› Simulation of DART impact

› Grid based ALE code (iSALE: Raducan et al., Luther et al.)

› Particle based SPH codes (Maindl & Schäfer, Jutzi et al.)

\[Y_0 = 1 - 100 \text{ kPa} \]
\[f = 0.6 - 1.0 \]
\[\Phi = 20 - 50\% \]

\[Y_0 = 1-10 \text{ kPa}, \Phi = 0.4 - 0.8 \]

\[Y_0 = 10 \text{ kPa}, f=0.6, \Phi=30\% \]
Crater Diameter

- Derived from scaling laws (e.g. Holsapple & Housen, 2007) and iSALE shock physics code

- Y_0, f, (and Φ) reduce crater diameter

Effect on θ?
Ejecta Analysis with iSALE

continuum approach in models:
- Good description of crater formation
- ejecta curtain underresolved
→ Tracer enable to quantify ejection
 - velocity \(v \)
 - angle \(\alpha \)
 - launch position \(x \)
Validation of Ejecta Data

› Validation of ejection data for impact experiments into coarse sand

(as basis for determination of β)

(i) $\frac{v}{\sqrt{gR}}$ vs. $\frac{x}{R}$

(ii) Launch angle θ vs. $\frac{x}{R}$

$R =$ crater radius, $x =$ launch position

Luther et al. (2018)
Validation of Ejecta Data

Validation of ejection data for impact experiments into coarse sand
(as basis for determination of β)

(i) $v/(gR)$ vs. x/R
(ii) θ vs. x/R

R = crater radius, x = launch position

Luther et al. (2018)
Momentum Multiplication factor

- β derived with iSALE shock physics code
- Y_0, f reduce β

$v = 6 \text{ km/s}$

01.05.2019 | Museum für Naturkunde Berlin – Leibniz-Institut für Evolutions- und Biodiversitätsforschung
Momentum Multiplication factor

- β derived with
 iSALE shock physics code
- Y_0, f, and Φ
 reduce β

$v = 6$ km/s

- iSALE

$Y_0 = 1$ kPa
- $\Phi = 20\%$
- $\Phi = 30\%$

$Y_0 = 10$ kPa
- $\Phi = 20\%$
- $\Phi = 30\%$

$Y_0 = 100$ kPa
- $\Phi = 20\%$

01.05.2019 | Museum für Naturkunde Berlin – Leibniz-Institut für Evolutions- und Biodiversitätsforschung
Momentum Multiplication factor

- β derived with iSALE shock physics code
- Y_0, f, and Φ reduce β

\[v = 6 \text{ km/s} \]
Momentum Multiplication factor

\(\beta \) derived with iSALE shock physics code

\(Y_0, f, \) and \(\Phi \) reduce \(\beta \)
Momentum Multiplication factor

- Differences for same code and material due to:
 - projectile set-up
 - EoS
 - model parameters

\[v = 6 \text{ km/s} \]
differences for same code and material due to:
 > projectile set-up
 > EoS
 > model parameters

\[\Delta \beta \approx 2\% \]
\[\Delta \beta \approx 4\% \]

\(v = 6 \text{ km/s} \)
Momentum Multiplication factor

- differences for same code and material due to:
 - projectile set-up
 - EoS
 - model parameters
 - layering

\[v = 6 \text{ km/s} \]

\[\beta \]

\[Y_0 = \text{1 kPa, iSALE} \]

- two layers: top \(\Phi = 50\% \)
- bottom \(\Phi = 30\% \)

\[\text{iSALE, } f=0.6 \]

\[Y_0 = \text{1 kPa} \]

\[Y_0 = \text{10 kPa} \]

\[Y_0 = \text{100 kPa} \]
Momentum Multiplication factor

- differences for same code and material due to:
 - projectile set-up
 - EoS
 - model parameters
 - layering

\[\Delta \beta \approx 5\% \]

\(v = 6 \text{ km/s} \)

\(Y_0 = 1 \text{ kPa, iSALE} \)

- top \(\Phi = 50\% \)
- bottom \(\Phi = 30\% \)

\(Y_0 = 1 \text{ kPa} \)
\(Y_0 = 10 \text{ kPa} \)
\(Y_0 = 100 \text{ kPa} \)

01.05.2019 | Museum für Naturkunde Berlin – Leibniz-Institut für Evolutions- und Biodiversitätsforschung
Momentum Multiplication factor

- differences for same code and material due to:
 - projectile set-up
 - EoS
 - model parameters
 - layering
Momentum Multiplication factor

differences for same code and material due to:
 › projectile set-up
 › EoS
 › model parameters
 › layering

\[\Delta \beta \approx 5\% \]
\[\Delta \beta \approx 4\% \]
Momentum Multiplication factor

- differences for same code and material due to:
 - projectile set-up
 - EoS
 - model parameters
 - layering
 - Codes used

\[\Delta \beta \approx 11\% \]
\[\Delta \beta \approx 5\% \]
in agreement with results from DART benchmark

01.05.2019 | Museum für Naturkunde Berlin – Leibniz-Institut für Evolutions- und Biodiversitätsforschung
Momentum Multiplication factor

- Differences for same code and material due to:
 - Projectile set-up
 - EoS
 - Model parameters
 - Layering
 - Codes used

- Target properties are most crucial
- More constraints than β required to assess target properties (crater size)

$\Delta \beta \approx 45\%$
Conclusion

› Modelling aims at reliable predictions

› Preliminary results indicate an overall good agreement between:
 › different users (few % deviations)
 › iSALE and SPH calculations (~10% deviations)

› Results (β, crater size, etc.) strongly depend on material properties
 (50% deviations in β):
 › cohesion is most important parameter
 › porosity and coefficient of friction also affect β
 › layering plays a role for β

› projectile set-up might have some influence on results
Next Steps

› more detailed comparisons of crater morphologies and β
 between different codes and for different target properties

› study of more complex effects:
 › shape, local topography, ...

› further comparisons to experiments

› connect in-situ observations with properties of subsurface
Thank you for your attention.
Benchmarking of Shock Physics Codes

- effect of impact angle (SPH), 45°:
 - $\Phi = 0$: decrease of θ by $\sim 7\%$
 - $\Phi > 0$: increase of θ by $\leq 17\%$

$\Phi = 0$: decrease of β by $\sim 7\%$

$\Phi > 0$: increase of β by $\leq 17\%$

Single Al particle

$m = 500$ kg

basalt

$Y = 100$ kPa
Examples of ongoing modelling & experiments: SimChoc

› Impact Simulation Code: RADIOSS

Simulation Capabilities:

- Crash and Safety
- Drop & Impact
- Blast & Hydrodynamic Impact
- Fluid-Structure Interaction
- Terminal Ballistic
- Forming & Composites Mapping

Multiphysics Analysis and Optimization
Examples of ongoing modelling & experiments: Fraunhofer Ernst-Mach-Institut

› Diagnostics for experimental reproduction of DART Impact

<table>
<thead>
<tr>
<th>Feature</th>
<th>Impact flash</th>
<th>Momentum transfer</th>
<th>Impact ejecta</th>
<th>Cratering</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-situ</td>
<td>Emission spectroscopy</td>
<td>Ballistic pendulum</td>
<td>High-speed visualization</td>
<td>3D crater profilometry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post mortem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laboratory experiments important for code validation!
Goals of Impact Simulation Group

› Predict impact outcome:
 - Complimentary to DART studies -
 › Range of expected crater morphologies and properties of the surrounding surfaces
 › Efficiency of momentum transfer β

Morphology: example for 40% porosity and large coefficient of friction (1.0) (Luther et al. 2017)

Efficiency $\beta = \frac{\text{Didymos mass} \times \Delta V}{\text{momentum}}$