Research On Asteroid Dynamic Behavior And Deflecting Defense Effect By Space-Based Laser-Driven
CHEN Chuan\(^{(1)}\), YANG Wulin\(^{(2)}\), YU Qian\(^{(3)}\), LI Ming\(^{(4)}\), GONG Zizheng\(^{(5)}\),

1. Beijing Institute of Spacecraft Environment Engineering, 102 Youyi Road
 Haidian District Beijing 100094 China, 86-010-68745870,
 chenchuan0611@163.com;
2. Beijing Institute of Spacecraft Environment Engineering, 102 Youyi Road
 Haidian District Beijing 100094 China, 86-010-68745870,
 604445397@qq.com;
3. Beijing Institute of Spacecraft Environment Engineering, Science and
 Technology on Reliability and Environmental Engineering Laboratory, 102
 Youyi Road Haidian District Beijing 100094 China, 86-010-68113591,
 yq_900818@163.com;
4. China Academy of Space Technology, 102 Youyi Road Haidian District
 Beijing 100094 China, 86-010-68112092, liming_cast@sina.cn;
5. Beijing Institute of Spacecraft Environment Engineering, Science and
 Technology on Reliability and Environmental Engineering Laboratory, 102
 Youyi Road Haidian District Beijing 100094 China, 86-010-68113591,
 gongzz@263.net;

Keywords: Near Earth asteroids, impact Earth defense, laser ablation driven,
irregular target dynamic behavior, deflection efficiency calculation

Abstract
Asteroid impact events occurred frequently in history, causing numerous
environmental disasters and biological extinction, which is a major potential
threat to mankind. The defense of the asteroid impact has become a hot issue
in the international community and a great challenge to the global space
industry. This paper analyzes the identification of the threat of asteroid impact
and the need for security deflecting defense. Based on the interaction
mechanism between laser and material, a space-based laser array defense
system is proposed to deflect the asteroid by laser ablation driven. The
feasibility of deflecting asteroid using space-based laser deflection array
system, which consisting of 10 sets laser irradiation systems with 1KJ single
pulse energy, 1Hz frequency and 0.6m transmitting aperture, through
continuous driving for a long time by approach and accompanying fly, is
analyzed and calculated. Through a triangulation three-dimensional
reconstruction calculation method, the dynamic behavior of the asteroid under
the laser irradiation drive is studied, and the influence law of the shape and
rotation of it on the laser driving impulse and the influence of laser driving on its
attitude and the rotation state are analyzed. Then taking seven of the most
threatening asteroids as objects, the deflection defense effect of laser array

defense system is calculated. The results show that the space-based laser drive system can effectively deflect these asteroids with sufficient warning time. This paper provides a useful reference for the research on the technique of space based laser deflecting to prevent asteroids from striking the earth.